
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

...... r.
i_ VLSI Memo No. 89-549 SEk '9 ; "

June 1989

'-U

Improving the Performance of the Kernighan-Lin and
Simulated Annealing Graph Bisection Algorithms

I
Thang Bui, Christopher Heigham, Curt Jones, and Tom Leighton

ON S-,Arr
Aplrave4 fo: puh1ic relecwel

Abstract Disnibuncn Un iz.wted

In this paper, we compare the performance of two popular graph bisection algorithms. We
also present an empirical st~dy of a new heuristic, first proposed in Bui, Chaudhuri,
Leighton, Sipser [BCLS87} that dramatically improves the performance of these bisection
algorithms on graphs with small (64)' average degree.

In the graph bisection problem we are given a graph G = (VE) and are asked to partition
the vertex set V into two equal-sized subsets V1 and V2 in such a way that the size of the cut
between them is minimized. The cut of V1 and V2 is the number of edges with one
endpoint in V1 and the other endpoint in V2. The minimum cut over all bisections is
known as the bisection width of the graph. Graph bisection has applications in VLSI
placement and routing problems. The problem is known to be NP-hard.

Bisecting graphs is one problem domain where simulated annealing Johnson, Aragon,
MeGeoch, Schevon [JCAMS84] has been used with some success. Kernighan-Uin [KL70] is
the recognized champion among the classical approaches to the graph bisection problem.
Unfortunately it is known to fail badly on certain types of graphs (e.g., the ladder graph).

In this paper both methods for solving the graph bisection problem with be outlined.
Results of applying the algorithms to this problem domain will be given. Also a new
heuristic, called compaction, which we originally proposed in [BCLS87] is shown to
dramatically improve the performance of both approaches on graphs with small average
degree.

89 9 0 1,927
Mcuosyste-s MassachuSeIus Cambr dge ehone
Reseach Cente, Instlute Massachusetts (617) 253-8138
Root- 39.321 o4 Technologv 02139

- __1 - - Iti l I

Acknowledgements

To appear in the Proceedings, Design Automation Conference, June 1989. This research was
supported in part by the Defense Advanced Research Projects Agency under contract
number N00014-87-K-0825, DARPA/U.S. Army Research Office under contract
DAAL 03-86-K-0171, Air Force Contract AFOSR-86-0076, and NSF Presidential Young
Investigator Award.

Author Information

Bui and Jones: Computer Science Department, Pennsylvania State University, University
Park, PA 16802.

Heigham and Leighton: Department of Mathematics and Laboratory for Computer
Science, MIT, Room NE43-332, Cambridge, MA 02139. (617) 253-5876.

Copyright© 1989 MIT. Memos in this series are for use inside NUT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

C

Improving the Performance of the
Kernighan-Lin and Simulated Annealing

Graph Bisection Algorithms A cesio,, ForGahNTIS CRA&I #

Thang Bui', Christopher Heigham", Curt Jones' and Tom Leighton " t BTIC TAB L
SUInafrio(irced

JJ stIf lCd I k.)rl

*Computer Science Department

Pennsylvania State University By

University Park, Pennsylvania 16802 D4 bpt on

-Math Department 9z Laboratory for Computer Science Avilabibiy Codes

Massachusetts Institute of Technology i Avail d I or

Cambridge, Massachusetts 02139 D1st SPeCild

Abstract A# II

In this paper. we compare the performance of two popular graph bisection algorithms. We also present

an empirical study of a new heuristic, first proposed in [BCLS87], that dramatically improves the performance

of these bisection algorithms on graphs with small (: 4) average degree.

I. Introduction

In the graph bisection problem we are given a graph G = (V, E) and are asked to partition the

vertex set V into two equal-sized subsets TV, and V2 in such a way that the size of the cut between them is

minimized. The cut of V, and V2 is the number of edges with one endpoint in V, and the other endpoint in

V2 . The minimum cut over all bisections is known as the bisection width of the graph. Graph bisection has

applications in VLSI placement and routing problems. The problem is known to be NP-hard.

Bisecting graphs is one problem domain where simulated annealing [JCAMS84] has been used with

some success. Kernighan-Lin [KL70] is the recognized champion among the classical approaches to the graph

bisection problem. Unfortunately it is known to fail badly on certain types of graphs (e.g., the ladder graph).

In this paper both methods for solving the graph bisection problem will be outlined. Results of applying

the algorithms to this problem domain will be given. Also a new heuristic, called compaction, which we

originally proposed in [BCLS87] is shown to dramatically improve the performance of both approaches on

graphs with small average degree.

I. The Simulated Annealing Algorithm

Simulated annealing was proposed by Kirkpatrick, Gelatt and Vecchi [KGV83], s a different approach

for approximating solutions to difficult combinatorial optimization problems. The method is basd on ideas

tResearch supported in part by DARPA Contract N0014-87-K-825, Airforce Contract OSR-86-0076,

Army Contract DAAL-03-86-K-0171, and NSF Presidential Young Investigator Award.

-1-

from statistical mechanics and motivated by the analogy to the behavior of a physical system in the presence

of a heat bath. The computer scientist can view the process as a modification of the iterative improvement

(or "neighborhood search") technique

In iterative improvement an initial solution is repeatedly improved by making small local changes until

no such alteration yields a better solution. The "goodness"of a solution is based on a cost function that is to

be minimized. Local knowledge (small local changes) is used to decrease the cost function until no further

reduction is possible. The drawback with this type of search is the problem of stopping at a local, but not

global, optimum. The process is usually carried out several times with different randomly generated starting

configurations to deal with this problem.

Statistical mechanics deals with properties of the large numbers of atoms to be found in samples of

solid or liquid matter. The behavior of a system in thermal equilibrium at a given temperature is observed

by experiments. One aspect of a system studied here is what happens to the substance in the limit of low

temperature. The atoms may remain fluid or solidify, and if they solidify they may form a crystalline solid

or a glass.

Experiments that determine the low temperature state of a substance are done by careful annealing,

first applying heat to the substance, then lowering the temperature slowly, and spending a long time at

temperatures in the vicinity of the freezing point. If the cooling is too rapid the substance may get out of

equilibrium, resulting in a metastable, locally optimal condition.

Iterative improvement is much like the processes modeled by statistical mechanics, with the cost

function playing the role of energy. Using only rearrangements that lower the cost function of the system

is like extremely rapid quenching from high temperature to zero. The results are similarly, sometimes only

metastable, local optimal solutions. Simulated annealing provides a generalization in which controlled uphill

steps can also be incorporated in the search for a better solution. These uphill steps keep the solution from

cooling too rapidly.

The generic simulated annealing approach is shown in Figure 1.

1. GET INITIAL SOLUTION S

2. GET INITIAL TEMPERATURE T

3. WHILE (NOT YET FROZEN) DO

4. BEGIN

5. WHILE (NOT YET IN EQUILIBRIUM) DO

6. BEGIN

7. PICK A RANDOM SOLUTION 5'

8. LET A = CHANGE IN COST

9. IF A <0SET S= S'

10. ELSE SET S = S' WITH PROBABILITY e(-AlT)

11. END

12. REDUCE TEMPERATURE

13. END

14. OUTPUT SOLUTION S

Figure 1. Generic simulated annealing algorithm.

-2-

Controlled uphill movements are allowed by step 10 of the procedure given in Figure 1. According to

Kirkpatrick et al. [KGV83],

"This step allows gross features of the eventual state of the system to appear at high

temperature, the details develop at lower temperatures."

This algorithm is based on a simple procedure introduced by Metropolist et al. [MRRTT53] to simulate

a collection of atoms in equilibrium at a given temperature. At each step an atom is given a small random

displacement and the resulting change, AE, in energy is computed. If AE < 0, the displacement is accepted.

The other situation, AE > 0, is treated probabilistically. The displacement is accepted with probability equal

to e(- AEIT) "*. The generic simulated annealing algorithm extends this procedure by using a cost function

instead of energy and letting the temperature be a parameter that is reduced as the process continues.

III. The Kernighan-Lin Algorithm
One well known method for solving the graph bisection problem is the Kernighan-Lin heuristic. It seems

to work well in practice and its variations are some of the most widely used graph bisection algorithms. The

algorithm starts with an arbitrary bisection, say (A, B), and improves upon it. The algorithm interchanges

subsets X C A, Y C B and IXI = JYI < JAI such that the size of the bisection is decreased. The method

selects elements of X and Y sequentially.

We will need some additional notation to fully describe this algorithm. Let G = (V, E) be a graph on

2n vertices and let (A, B) be a bisection of G. Denote the cardinality of the bisection (A, B) by j(A, B)1.

For each vertex a E A, we define the gain, g., of a as the difference between the number of edges connecting

a to vertices in B and the number of edges connecting a to vertices in A. We extend this definition to pairs

of vertices, one in A and one in B. We denote by g,b the reduction in the size of the bisection when a and

b are intercharge. Clearly,

g.,= g. + gb - 26(a, b)

where
bab) 1, if (a, b) E E;

(0, otherwise.

The algorithm first computes gab for all a E A, b E B. It then chooses ai E A, b1 E B such that

gai.b, = maz{g,.fla E A, b E B}

The algorithm then updates all the gains for each vertex in V with respect to the bisection that would

be created by interchanging al and bl. The algorithm then repeats this process but does not consider the

vertices just exchanged again during this pass. The process is repeated until all vertices have been considered.

We now have a list of n pairs of vertices. If all these pairs were interchanged the size of the bisectiou would

not change. The algorithm picks a k < n such that the interchange of the first k pairs of vertices will give

a maximum reduction in the size of the bisection over all choices of k. This whole process makes up one

pass of the algorithm. The procedure may have a fixed number of pases or it can run until no improvement

is possible. The algorithm is listed in Figure 2. For a more detailed treatment of this and other bisection

algorithms see (Bui86].

Strictly speaking we need a Boltzmann factor, kB, multipling T in this equation [KGV831.

-3-

Begin

1. Compute ga, gb for each a E A, b E B.

2. QA = 0 , QB= 0.

3. fo i = 1 ton- 1 do

Begin

4. Choose a, E A - QA and b, E B - QB such that g.,b,

is maximal over all choices of a and b.

S. Set Q. = Q. U {a,}, = Q U{b,}

6. for each a E A- QA do

- ga + 26(a, a) - 26(a, b,)

7. for each b E B - QB do

gb = gb + 26(b, a,) - 2b(b, a,)

End

9. Choose k E {1- . n - 1) to maximize x-%=I ga..b,

10. Interchange the subsets {a,,..., ak} and {b b}
to get a new bisection.

End

Figure 2. One pass of the Kernighan-Lin graph bisection algorithm.

IV. Graph Models

We used three random graph models, Gb,,(2n, b, d), 92,.1(2n, PA, P, bia) and QNp(2n,p) to test the

bisection algorithms. The graph model 9Np(2 n,p) contains all simple graphs on 2n vertices, in which an

edge between any two vertices is present with probability p, independent of any other edge. The expected

average degree of each vertex is (2n - l)p (a binomial distribution). This model was used in [JAMS84],

however it can be shown that the graphs in Gjp(2n, p), for a fixed p, have a large minimal cut. The minimal

cut usually contains about half the number of edges in the graph. Hence a random partition will differ only

slightly from the optimal partition. Thus, this model may not distinguish good heuristics from mediocre

ones.

The model 92,,t(2n, PA, PB, bis) differs from GNp(2n,p) slightly. First the graph is broken into two

sets (A and B) each of size n. Edges are placed between any two vertices in set A with probability PA . Edges

are also placed between any two vertices in set B with probability pa. Then exactly bis edges are randomly

placed between vertices of sets A and B. This puts an upper bound (bia) on the bisection of the graph. All

edges are placed independently of other edges. With this model it is difficult to generate graphs with small

average degree and still be confident that the optimal bisection is equal to bis. Many times graphs with

small average degree (< 4) and large expected bisection (> log 2n) generated with this model have minimum

bisection width much smaller than the expected bisection width. If the average degree of the graph is less

than two, then the graphs generated under this model usually have an optimal bisection width of zero. This

makes obtaining meaningful results with this graph model difficult unless the average degree of the graph is

large. In order to remedy these two problems a graph model is needed that allows one to specify with high

--4-

probability the exact bisection width as well as yield a uniform placement of the edges. One such graph

model is Qbre(2 n, b, d).
The graph model !;b,,9(2n, b. d) was introduced by Bui et al., in [BCLS87]. This class of graphs consists

of all simple regular graphs with 2n nodes, where each node has degree d and the graph has bisection width
b. For graphs generated under this model the minimum bisection is much smaller than the average bisection

so this graph model overcomes the weakness of 9Np(2n,p). Also with this model we were able to construct

with high probability graphs of small degree with a unique small bisection. This is an improvement over the

model 92,t(2n, PA, PB, bis). Most of the graphs used to test our implementations were generated with this

model, we did however test the effectiveness of the algorithms on graphs generated using the other random

graph models as well as using grid graphs, ladder graphs, and binary trees.

V. Compaction
It was noticed in [BCLS87] that both Kernighan-Lin and simulated annealing worked much better on

graphs when the graph has a high (> 3) average degree. On sparse graphs the algorithms ran longer with less
than optimal results. Kernighan-Lin also performs better when given a good starting bisection. Goldberg

and Burstein [GB83] also discovered that Kernighan-Lin based algorithms did better on networks of large
degree. Previous experimental results in (BCLS87] showed that a new heuristic (compaction) improved the

performance of the Kernighan-lin algorithm. The compaction heuristic combines two nodes of a graph G

into one node of a graph G'. We wanted to see if the technique would produce similar improvements for

simulated annealing and also determine how all four methods compared.
Bisection using compaction works on a graph G = (V, E) as follows:

1. Form a maximum random matching M of the graph G.
2. Form a new graph G' by contracting the edges in the random matching M. That is coalesce the

two endpoints of an edge in the random matching M to form a new vertex. All vertices incident

to the two original vertices are now incident to the new vertex just formed.

3. Run the bisection heuristic on G' to obtain the bisection (A', B').

4. Uncompact the edges to obtain the original graph and create a initial bisection (A, B) from

(A', B').

5. Use (A, B) as the starting configuration for the bisection procedure on the original graph.

This method will cause the average degree of the graph G' to be larger than the average degree of
G. If the bisection algorithm finds a good bisection of G' then hopefully the corresponding initial bisection

(A, B) of G will be close to an optimal bisection of G. We shall denote the methods resulting from using
compaction as compacted simulated annealing (CSA) and compacted Kernighan-Lin (CKL).

VI. Results
We generated 556 random graphs to study how well the algorithms perform. For each graph we ran

each procedure from two different randomly generated initial bisections. AU bisection results reported here

will be based on the best solution of the two trials for that graph. All timing results will be the total time

it took the procedure to complete both starting configurations (including the time to generate the initial
bisections). The graphs ranged from five hundred to five thousand vertices. The bisection widths ranged

-5-

from a cut size of zero to V'T71. For each setting of the parameters under the model Gb,,'(2n,b.d) we

generated three different random graphs. Under the other graph m(dels one graph was generated with each

setting of the parameters. Most of the random graphs (368) were generated using the model Q,,(2n, b, d).

Of the remaining random graphs, 132 were generated using the model Q2,et(2n, PA, pa, bis), and 56 under the

model ,,p(2n,p). A collection of special graphs (grid, ladder and binary trees) were also used for testing.

In these tests both methods performed very well in terms of the bisection returned by the algorithm

when the average degree of the graph was greater than three. The compaction heuristic provided improve-

ment. on graphs with average degree of two to three. In these graphs compaction decreased the size of the

bisection found and in many cases actually ran faster than the standard algorithms. For graphs with average

degree less than two both the standard and compacted versions of the algorithms usually found a bisection

of cost zero. The Kernighan-Lin implementation was faster than the simulated annealing procedure.

It should be noted that under the model 96,e 9(2n, b, d) graphs of degree two must consist only of a

collection of cordless cycles. As such the optimal bisection is < 2 for all settings of b. This collection of

simple cycles does give some indication of how well the algorithms perform on very sparse graphs. However

one could just use a depth first search algorithm to obtain a better approximation or one could solve the

problem exactly in time 0(n 2) for these graphs. The rest of this section will be presented as a series of

observations followed by data to support the observation being made.

Observation 1: The bisection algorithms improve as the average degree increases.

Both algorithms do much better on graphs of degree 4 than graphs of degree 3. (Tests were also

performed on graphs with degree larger than 4, but results on graphs of degree 4 exemplify what happens for

graph of higher degree). This is most evident in the tests run on larger graphs. In particular on graphs from

9b,eg(5000, b, 3) both algorithms without compaction usually found bisections that were twenty to fifty times

larger than the expected bisections. But on graphs from 9bgeg(5000, b,4) the expected bisection was always

found. Also, the algorithms usually ran faster on regular degree 4 graphs than regular degree three graphs.

On graphs of 5,000 vertices the algorithms ran up to three times faster for the Kernighan-Lin algorithm and

almost two times faster for the simulated annealing algorithm. This is because it takes fewer passes for the

algorithms to converge on degree 4 graphs. In (BCLS87] it was conjectured that large degree graphs may

have very few local optimums (bisections close to the optimal bisection). This would help explain our data.

Observation 2: Compaction improves performance on small degree graphs both in the time needed by the

algorithms and in the quality of the solution returned.

From the tables in the appendix it can be seen that compaction improves the performance of Kernighan-

Lin more than simulated annealing. In the appendix one can also see the dramatic improvement compaction

provides the algorithms on graphs from 9j,,#(5000, b, 3). Due to lack of space we have not shown the data

for graphs of size smaller than 2000 but we observed that once again compaction provides more of a benefit

as the graph size increases. In graphs from 9.b.,(5000, b, 3) the smallest improvement compaction provided

was over 90 percent. Similar significant improvements are also observed for graphs in C2..S(5000, PAPD, b).

Notice also that compaction usually sped up the Kernighan-Lin algorithm as well as improved the quality of

the solution returned. Compaction did not slowdown simulated annealing significantly on graphs of degree

-4-

< 3. Compacted Kernighan-Lin was three times faster than the standard Kernighan-Lin algorithm and ten

times faster than simulated annealing on graphs from G9bg(5000,b,3). On graphs of degree 4 compaction

did not cause a significant slowdown for Kernighan-Lin while returning the expected bisection.

Observation 3: Compaction also helps on some special graphs

We also tested the two bisection heuristics on some special classes of graphs to see how much improve-

ment compaction would make. The graphs ranged in size from 100 to 5,000 vertices. In Table 1 we show

the average improvement in the cut size of the bisection returned that compaction made for each of the two

procedures. In the appendix we also give more detailed tables for these special graphs.

Avg compaction
Graph type improvement over

KL SA

Grid 13% 34%H H
Ladder 12% 24%

Binary Tree 56% 17%

Table 1. Bisection width improvement Figure 3. An example of a ladder graph
made by compaction. Best of two starts.

Observation 4: Without compaction Kernighan-Lin algorithm runs faster and produces better solutions

than simuated annealing. On binary trees and ladder graphs, however, Kernighan-Lin algorithm did not do

as well as simulated annealing.

In our tests the Ke,-nihan-Lin algorithm was a much faster procedure. On large graphs the simulated

annealing procedure took up to twenty times longer to converge to a solution. Simulated annealing does

allow for a tradeoff between the quality of solution and time used to find the solution. The "fine tuning"of

the annealing schedule can be a big job, as we found out. When the annealing procedure did terminate

quickly it was usually at a far from optimal solution.

In the quality of the solution returned, the Kernighan-Lin procedure was more consistent than simu-

lated annealing. In our test we started each procedure from two different initial configurations. Simulated

annealing occasionally showed large differences in the results of the two trials. As the average degree of the

graph increased, both algorithms started to find the expected bisections. On graphs of average degree of 2.5

to 3.5, when a noticeable difference was observed in the quality of the bisection returned, the Kernighan-

Lin procedure had the better bisection sixty percent of the time. Simulated annealing did out perform

Kernighan-Lin on binary trees, and ladder graphs.

-7-

Observation 5: With compaction. simulated annealing is still slower than Kernighan-Lin algorithm but

there is no big difference in the quality of the solutions.

Compaction definitely helped both algorithms. Simulated annealing was still a much slower procedure.

When there is a difference in the quality of the solutions by Kernighan-Lin and simulated annealing the former

did return slightly better bisections. the exceptions being on binary trees and ladder graphs. Compacted

simulated annealing found smaller cuts than compacted Kernighan-Lin on these graphs.

VII. Conclusion

We have shown further empirical evidence that Kernighan-Lin and simulated annealing perform better

as the average degree of the graph increases. This provided the basis for the compaction heuristic which

drastically improved the performance on small degree graphs. The performance increase was in the quality

of the solution found and for Kernighan-Lin the speed in which they were obtained. Our empirical data

suggest that the compaction heuristic should be used on graphs with average degree of four or less.

We also found Kernighan-Lin to be a much faster algorithm than simulated annealing on the graphs

that we tested. Part of this is due to the fact that simulated annealing must run until the temperature cools

down to a freezing point. Simulated annealing may then continue to search for an optimal solution a long time

after finding a good bisection. In fact simulated annealing may migrate away from an optimal solution if it is

found at a high temperature. One must then save the best bisection found as the algorithm progresses. This

increases both the time and storage requirements of the algorithm. This is why compaction does not increase

the time needed by Kernighan-Lin to complete but may increase the time needed by simulated annealing to

return a bisection. Attempts at correcting this flaw caused the algorithm to terminate prematurely. This

gave us some indication of how much work was needed to "fine tune"the simulated annealing algorithm.

One may have to spend a great deal of computation time to find the correct setting of the parameters for a

particular class of problems.

VIII. References

[Bui86] T. Bui, "Graph Bisection Algorithms", Ph.D. Thesis, Dept. of Electrical Enginerring and Computer

Science, Massachusetts Institute of Technology, 1986.

[BCLS87I T. Bui, S. Chaudhuri, F. Leighton, and M. Sipser, "Graph Bisection Algorithms with Good Average

Case Behavior", Combinatorica 7 (2) 1987, pp. 171-191.

[GB83] M. Goldberg and M. Burstein, "Heuristic Improvement Technique for Bisection of VLSI Networks",

Proceedings of the IEEE International conference on computer design: VLSI in computers (ICCD

'83), 1983, pp. 122-125.

[JCAMS84] D. Johnson, C. Aragon, L. MeGeoch and C. Schevon, Unpublished Manuscript 1984.

(KL70] B. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs", The Bell

System Tech J., Vol. 49, No. 2, Feb. 1970, pp. 291-307.

[KGV83] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi, "Optimization by simulated annealing", Science 220

May 13, 1983, pp. 671-680.

[MRRTT53] N. Metropolis, A. Rcaenbluth, M Rosenbluth, A. Teller, and E. Teller, "Equations of State Calcu-

-8-

lations b? Fast Computing Machines," Journal Chemical Phys 21. pp 1087-1092, 1953.

IX. Appendix

In the following tables we have summarized the nontrivial (2n > 2000) data from our tests. The

columns of the tables shov he expected bisection width (b) of the graph along with the cut size of the

bisection returned by t,- standard (bsA, bKL) and compacted (bCSA, bcKL) versions of each algorithm. The

time needed to roi..vute the bisection is listed under the cut size. We also show for each algorithm the

relative improvement compaction provides both in the cut size of the bisection returned and the time needed

to find that bisection The cut size improvement is given as a percentage as is the time improvement. The

reiative time improvement was calculated as follows.

tw = time without compaction

tc = time with compaction

Rel. speed up - - x 100
twoc

The tirrung results are in terms of cpu minutes. The top line of each row in the following tables represents

cut size and the bottom line represents cpu time. Each entry in the table for the 9b,,,(2n, b,d) model

is the average of three different random graphs generated with the same parameters but different random

number generator seeds. All random numbers were generated by a Fibonacci random number generator.

The programs were coded in C and run on a Vax 780 under BSD Unix Version 4.3.

Ladder graphs

Ladder graph with 3N nodes
b -b q bX -bnLX10

3N bSA bcsA S x 100 bKL bCKL X 100

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

300 7 9 -29 17 12 29
0.46 0.76 -65 0.03 0.05 -66

600 24 15 38 25 34 -36
1.10 1.17 -6 0.05 0.07 -40

1200 46 28 39 73 50 32
2.89 4.03 -39 0.16 0.20 -25

1500 50 42 16 72 76 -6
3.97 5.32 -28 0.15 0.18 -20

2100 75 60 20 108 108 0
4.88 7.45 -53 0.41 0.26 37

3000 113 73 35 160 123 23
9.34 13.84 -48 0.49 0.85 -73

4500 160 122 24 245 233 5
12.35 19.71 -60 0.67 0.60 -10

6000 212 122 24 245 233 5
18,47 27.15 -47 1.81 1.94 -70

-9-

Grid graphs

N x N grid graph

X 100 b bCnbsA bCSA bs 0 bKL bCKL

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

10 14 10 29 10 10 0
0.13 0.11 15 0.01 0.02 -50

20 50 32 36 25 20 20
0.66 0.96 -45 0.05 0.07 -40

30 112 58 48 37 30 20
2.94 2.68 9 0.23 0.24 -4

40 152 98 36 55 40 27
3.23 3.43 -6 0.55 0.41 25

50 246 194 21 59 50 15
5.19 7.94 -53 1.11 0.76 35

60 326 222 32 69 73 -5
4.29 12.43 -189 2.38 1.35 43

Binary trees

Binary tree with N nodes

10 b .accx woN bsA bCSA bsA x 100 bKL bCKL . X 100

Time Time ReL speed up (%) Time Time Rel. speed up (%)

100 3 4 -33 8 6 25
0.49 0.97 -95 0.01 0.02 -98

200 5 4 20 17 10 41
1.80 2.00 -12 0.02 0.03 -56

400 16 14 20 29 13 55
3.65 6.43 -76 0.05 0.07 -45

500 18 15 17 34 10 71
3.88 5.84 -51 0.05 0.10 -95

700 26 21 19 41 19 54
7.30 9.74 -33 0.16 0.15 3

1000 31 24 23 74 32 57
12.15 15.92 -31 0.19 0.18 4

1500 53 46 13 103 37 84
18.46 22.65 -23 0.30 0.33 -11

2000 69 49 29 144 52 64
23.02 37.77 -64 0.54 0.55 -2

3000 112 72 36 226 82 64
35.52 39.92 -12 0.72 0.79 -9

4000 127 101 20 304 108 64
51.29 77.50 -51 0.82 1.22 -49

5000 167 126 25 363 140 61
64.94 78.73 -21 1.62 1.59 2

-10-

5000 vertex graphs

92,eS(5000, PA, PB, b) with average degree 2.5

b bsA bcsA A X 100 bKL bCKL .b4K'CL X 100

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

0 568 40 93 485 2 100
30.24 46.24 -53 2.06 1.58 23

2 611 1 100 58 4 93
29.63 47.02 -59 3.68 1.48 60

4 493 20 96 39 8 79
32.01 43.63 -36 2.48 1.57 37

6 504 33 93 90 18 80
29.70 45.24 -52 2.01 1.72 15

8 616 28 95 586 14 98
32.01 45.87 -43 2.45 1.54 37

22 551 64 88 82 21 74
31.25 45.64 -46 3.12 2.04 34

70 580 77 87 613 55 91
28.21 45.54 -61 2.43 1.74 28

92,et(5000,PA,PB,b) with average degree 3.0

0 257 0 100 13 3 77
32.06 47.16 -47 1.86 1.59 15

2 423 3 99 15 2 87
30.85 44.39 -44 1.86 1.39 25

4 751 5 99 22 5 77
16.41 37.35 -128 1.48 1.61 -9

6 85 7 92 14 7 50
32.26 47.30 -47 2.08 1.60 23

8 904 13 99 24 8 67
32.95 46.66 -42 1.28 1.60 -25

22 48 29 40 33 24 27
33.54 46.46 -39 1.78 1.70 5

70 870 70 92 95 64 33
32.84 47.10 -43 1.69 1.60 5

-11-

'2,,1(5000. PA, PB. b) with average degree 3.5

I 1 bsA bCSA bSA i00 bK b x X 100

Time Time Rel. speed up() Time Time Rel. speed up(%)

0 9 0 100 6 0 100
33.12 48.99 -48 1.21 1.59 -31

2 6 1 83 7 1 86
34.58 48.19 -39 1.12 1.68 -50

4 4 4 0 6 5 17
35.31 47.71 -35 1.33 1.71 -28

6 10 6 40 8 5 38
34.70 49.34 -42 1.12 1,82 -63

8 7 8 -14 13 6 54
31.18 50.34 -61 1.23 1.76 -43

22 21 25 -19 30 21 30
36.21 47.29 -31 1.12 1.84 -64

70 74 67 9 75 63 16
16.03 47.28 -195 1.33 1.84 -38

G,,,,(5000,PA-PB, b) with average degree 4.0

0 0 0 0 0 -

34.63 47.59 -37 1.07 2.49 -133

2 2 2 0 3 2 33
30.80 51.24 -66 1.08 1.96 -82

4 6 4 33 5 4 20
32.71 36.25 -11 1.19 2.02 -70

6 7 29 5 5 0
28.66 51.24 -79 1.18 2.44 -106

8 10 8 20 12 8 33
31.72 53.00 -67 1.07 2.19 -105

22 27 22 19 21 21 0
36.21 47.58 -51 1.16 2.12 -82

70 70 69 1 68 68 0
32.20 49.94 -55 1.07 2.22 -107

!QNP(5OOO, ______b*A ,& xooobKfp)'"X10

Avg bsA bCSA A 100 bKL bCKL X 100

Deg Time Time Rel. speed up (%) Time Time Rel. speed up (%)

2.5 635 591 7 641 557 13
34.63 47.59 -37 1.07 2.49 -133

3.0 809 764 6 836 743 11
35.35 46.01 -30 2.23 2.47 -11

3.5 1227 1175 4 1258 1150 9
31.19 47.58 -53 2.40 3.03 -26

4.0 1672 1624 3 1699 1614 5
32.17 48.82 -52 2.77 3.63 -31

**Each entry is the average of seven random graphs.

-12-

gbeg(5OOO. b, 3)

b bsA bCSA 100bKI bCKLx 100

Time Time Rel. speed up (0) Time Time Rel. speed up (%)

0 549 0 100 836 0 100
16.32 12.50 24 4.45 0.90 80

2 740 2 99 883 2 99
15.49 10.99 29 3.74 1.11 70

4 523 4 99 595 4 99
15.79 14.94 5 4.80 1.14 76

6 408 6 99 593 6 99
12.71 13.09 -3 4.90 1.17 76

8 554 8 99 315 8 97
15.22 14.85 2 5.83 1.24 79

12 671 14 98 595 12 98
16.22 14.5 11 5.08 1.14 78

16 727 17 98 601 16 97
12.85 14.10 -10 4.65 1.15 75

20 764 20 97 603 20 97
14.68 16.66 -14 7.66 1.14 85

70 695 70 90 891 72 92
15.90 17.68 -11 4.89 1.23 75

Gb,,(5ooo,6,4)

0 0 0 - 0 0
10.0 8.93 11 1.17 1.02 13

2 2 2 0 2 2 0
8.0 11.37 -42 1.17 1.14 3

4 4 4 0 4 4 0
12.09 10.51 13 1.17 1.18 -1

6 6 6 0 6 6 0
8.58 10.18 -19 1.17 1.25 -7

8 8 8 0 8 8 0
9.84 11.85 -20 1.17 1.27 -9

12 12 12 0 12 12 0
8.52 8.88 -4 1.21 1.25 -3

16 16 16 0 16 16 0
9.93 8.84 11 1.22 1.27 -4

20 20 20 0 20 20 0
8.63 11.39 -32 1.17 1.22 -4

70 70 70 0 72 72 0
8.72 10.36 -19 1.17 1.35 -15

-13-

2000 vertex graphs

92,et(20 00 ,PA,PB, b) with average degree 2.5

b bSA bCSA X 100 bKL bCKL . x 100

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

0 63 17 73 14 0 100
15.08 25.90 -72 1.05 0.55 47

2 149 4 97 33 5 85
15.56 22.67 -46 1.47 0.57 61

4 129 4 97 33 5 85
16.29 24.24 -49 1.15 0.61 47

6 252 6 98 261 7 97
16.32 23.73 -45 0.53 0.60 -15

8 224 8 96 248 7 97
16.26 24.68 -52 0.76 0.55 27

20 207 16 92 53 17 68
16.41 22.85 -39 0.58 0.65 -12

44 228 41 82 83 34 59
17.47 25.06 -43 0.80 0.74 7

92,aj(2000,PA,PB,b) with average degree 3.0

0 28 4 86 10 0 100
19.13 24.48 -28 0.72 0.74 -2

2 11 2 82 4 2 50
18.21 24.83 -36 0.68 0.56 18

4 35 7 80 12 4 67
18.91 25.19 -33 0.70 0.74 -4

6 66 8 88 10 5 50
18.17 27.01 -49 0.68 0.74 -9

8 10 7 30 10 7 30
17.74 25.77 -45 0.62 0.44 28

20 30 24 20 23 20 13
18.38 23.45 -28 0.61 0.60 1

44 327 38 88 42 36 14
16.45 25.92 -58 0.82 0.72 13

-14-

92,,(2 0 00 .PAPBb) with average degree 3.5

bSA bCSA x 100 bKL bCKL x 100

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

0 0 0 - 0 0
14.99 27.72 -85 0.48 0.62 -29

2 5 3 40 3 2 33
17.28 25.49 -48 0.52 0.67 -29

4 4 4 0 4 4 0
17.53 26.43 -51 0.63 0.64 -2

6 6 7 -17 6 6 0
17.15 26.77 -56 0.66 0.62 6

8 11 8 27 9 8 11
15.38 24.94 -62 0.57 0.64 -12

20 18 18 0 17 16 6
15.34 26.03 -70 0.57 0.70 -23

44 42 41 2 41 41 0
18.79 26.95 -43 0.66 0.67 -1

92,(2000,PA,PE,b) with average degree 4.0

0 1 0 100 0 0 -

18.53 26.91 -45 0.47 0.61 -30

2 2 2 0 7 2 71
15.96 27.45 -72 0.47 0.64 -36

4 3 3 0 3 3 0
17.15 25.75 -50 0.58 0.68 -18

6 5 5 0 5 5 0
15.79 25.06 -59 0.52 0.82 -57

8 9 8 11 10 8 20
16.60 28.09 -69 0.47 0.74 -59

20 20 20 0 20 20 0
16.66 26.99 -62 0.46 0.76 -64

44 41 41 0 41 41 0
15.03 27.29 -82 0.52 0.76 -46

gNp(2 0 0 0 , p)"

Avg bSA bcSA b x 100 bKL bCKL x 100

Deg Time Time Rel. speed up (%) Time Time Rel. speed up (%)

2.5 245 223 9 249 216 13
16.64 23.82 -103 0.74 0.76 -3

3.0 364 352 3 380 337 11
17.42 24.92 -43 0.77 0.92 -2

3.5 493 482 2 510 468 6
18.62 25.32 -36 0.87 1.06 -2

4.0 658 633 4 675 634 6
12.54 18.30 -46 0.60 0.91 -52

Each entry is the average of seven random graphs.

-15-

Q.1eg(2000. b. 3) m
S SA bCSbA A x 100 bKL bCKL b .L x 100b SA bsA (bsA bK -L

Time Time Rel. speed up (%) Time Time Rel. speed up (%)

0 96 0 100 0 0

5.52 4.03 27 1.43 0.33 77

2 2 2 0 105 2 98
4.86 5.45 -12 0.81 0.40 51

4 97 4 96 7 4 43
5.05 5.13 -2 1.03 0.43 58

6 279 7 97 366 6 98
5.55 4.10 26 0.62 0.42 32

8 77 8 90 10 8 20
5.41 4.48 17 1.57 0.43 73

12 159 12 92 130 12 91

5.38 4.74 19 1.06 0.43 59

16 251 16 94 253 16 94

5.50 4.08 26 1.05 0.44 57

20 295 20 93 221 20 91

5.51 5.07 8 1.08 0.46 57

44 291 57 80 263 44 835.31 6.49 -22 0.72 0.48 33

gb,.,(2000, b, 4)

0 0 0 0 0
2.66 3.64 -37 0.46 0.41 11

2 2 2 0 2 2 0
2.66 2.97 -12 0.46 0.41 11

4 4 4 0 4 4 0
2.86 3.36 -17 0.44 0.43 2

6 6 6 0 6 6 0
3.16 3.01 5 0.42 0.45 -7

8 8 8 0 8 8 0
2.92 2.80 4 0.44 0.45 -2

12 12 12 0 12 12 0
3.09 3.37 -9 0.42 0.45 -7

16 16 16 0 16 16 0
3.26 4.19 -29 0.44 0.46 -5

20 20 20 0 20 20 0
3.66 2.93 20 0.48 0.49 -2

44 44 57 -30 44 44 0
3.40 3.27 4 0.48 0.49 -2

-16-

